note that the interatomic distances between the Re atoms centering these face-joined octahedra [Re(1)–Re(1) at 3.12 and Re(2)–Re(2) at 3.61 Å] are notably different. They are also notably longer than the interatomic distances between the Re atoms centering the face-joined octahedron columns [2.66 and 2.75 Å].

 $Sc_5Re_8Si_{12}$ belongs to the category of structures built up with columns of square antiprisms and octahedra which has been discussed recently by Chabot & Parthé (1985). It has been shown above that the $Sc_5Re_8Si_{12}$ structure can be described as an arrangement of $Hf_2Ru_3Si_4$ -type slabs with interspersed monoatomic layers. Similarly, ZrMnSi₂ (Venturini, Steinmetz & Roques, 1982) can be described as an arrangement of deformed $Sc_3Re_2Si_4$ -type slabs [parallel to (110) in ZrMnSi₂] with another kind of interspersed monoatomic layer.

We acknowledge the help of Mrs B. Künzler with the preparation of the drawing and Dr J. Steinmetz and Mr J. M. Claude (Laboratoire de Microanalyse, Université de Nancy I, France) for the electron microprobe analysis. This study was supported by the Swiss National Science Foundation under contract No. 2.035-0.86.

References

- BECKER, P. J. & COPPENS, R. (1974). Acta Cryst. A30, 129-147.
- BERNARDINELLI, G. & FLACK, H. D. (1985). Acta Cryst. A41, 500-511.
- BROWN, I. D. (1985). Acta Cryst. A41, 399.
- Снавот, В. & Parthé, E. (1985). Acta Cryst. B41, 213-219.
- Chabot, B., Parthé, E. & Braun, H. F. (1985). Acta Cryst. C41, 1148-1152.
- FLACK, H. D. (1983). Acta Cryst. A39, 876-881.
- FLACK, H. D. & SCHWARZENBACH, D. (1987). Acta Cryst. A43. In preparation.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht, The Netherlands.)
- PECHARŚKII, V. K. (1979). Autoreferat Dis. Kand. Khim. (Abstract of thesis in Russian). Lvov: Nauk.
- PECHARSKII, V. K., BODAK, O. I. & GLADYSHEVSKII, E. I. (1978). Dopov. Akad. Nauk Ukr. RSR Ser. A, pp. 755–759.
- PECHARŚKII, V. K., BODAK, O. I. & GLADYSHEVSKII, E. I. (1979). Sov. Phys. Crystallogr. 24, 433–438.
- ROGL, P. (1984). In Handbook on the Physics and Chemistry of Rare Earths, Vol. 7, edited by K. A. GSCHNEIDNER & L. EYRING, ch. 51. Amsterdam: North-Holland.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- VENTURINI, G., STEINMETZ, J. & ROQUES, B. (1982). J. Less-Common Met. 87, 21-30.

Acta Cryst. (1987). C43, 1668–1674

Orthorhombic Perovskite CaTiO₃ and CdTiO₃: Structure and Space Group

By Satoshi Sasaki,* Charles T. Prewitt† and Jay D. Bass‡

Department of Earth and Space Sciences, State University of New York, Stony Brook, NY 11794, USA

AND WALTER A. SCHULZE

Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA

(Received 6 August 1985; accepted 13 May 1987)

Abstract. Structural aspects and physical properties strongly indicate that the $CdTiO_3$ perovskite has a centrosymmetric structure with space group *Pbnm*. Single-crystal X-ray studies have revealed that both $CaTiO_3$ and $CdTiO_3$ can be described well as $GdFeO_3$ type perovskites in terms of the size ratio of two kinds of cation occupying A and B sites. Distortions and

tiltings of polyhedra are systematically related to the observed tolerance factor. The crystal data for CaTiO₃ are: $M_r = 135.98$, Pbnm, a = 5.3796 (1), b = 5.4423 (3), c = 7.6401 (5) Å, V = 223.68 (1) Å³, Z = 4, $D_x = 4.04$ g cm⁻³, Mo Ka, $\lambda = 0.7107$ Å, $\mu = 58.0$ cm⁻¹, F(000) = 264, T = 293 K, R = 0.023, 703 unique reflections used for refinements, crystal synthesized at 1470 K and 2.5 GPa. The crystal data for CdTiO₃ are: $M_r = 208.30$, Pbnm, a = 5.3053 (1), b = 5.4215 (3), c = 7.6176 (3) Å, V = 219.10 (1) Å³, Z = 4, $D_x = 6.31$ g cm⁻³, Mo Ka, $\lambda = 0.7107$ Å, $\mu = 130.6$ cm⁻¹, F(000) = 376, T = 293 K, R = 0.019, 829 unique reflections, crystal synthesized at 1470 K and 1.5 GPa.

© 1987 International Union of Crystallography

^{*} Present address: The Photon Factory, National Laboratory for High-Energy Physics, Oho-machi, Ibaraki 305, Japan.

[†] Present address: Geophysical Laboratory, 2801 Upton Street, NW, Washington, DC 20008, USA

[‡] Present address: Department of Geology, University of Illinois, Urbana, IL 61801, USA.

Introduction. Historically, both CaTiO₃ and CdTiO₃ are known to crystallize with orthorhombic distortions of the perovskite structure, based on the observation of powder X-ray films (Náray-Szabó, 1943; Megaw, 1946). By using the single-crystal film method, Kay & Bailey (1957) and Kay & Miles (1957) assigned probable space groups for CaTiO₃ and CdTiO₃ to be *Pbnm* and *Pbn2*₁, respectively. The main difference between these two arrangements, if detectable, would be in the deviation of the divalent cations from the mirror plane of *Pbnm*.

The mineral perovskite (CaTiO₃) is one of the few minerals having the distorted perovskite structure, although it has been suggested that the Earth's lower mantle may be composed largely of MgSiO₃ perovskite (for example, Yagi, Mao & Bell, 1978). Because structural parameters of CaTiO₃ derived from the X-ray film study of Kay & Bailey (1957) deviate markedly from the systematic plots of other GdFeO₃type perovskites (Sasaki, Prewitt & Liebermann, 1983), we refined its crystal structure. A powder neutron study has been reported for this crystal (Koopmans, van de Velde & Gellings, 1983). For CdTiO₃, the Pbn2₁ structure* reported by Kay & Miles (1957) is characterized by a large displacement of Ti atoms along the b axis and a lack of equality between the atomic positions of O(2) and O(2)(2). In their measurement of electrical properties, Sholokhovich, Kramarov, Proskuryakov & Éknadiosyants (1969) could not resolve whether CdTiO₃ single crystals were ferroelectric. The present work is the consequence of two technical advances over previous studies: (1) use of a four-circle diffractometer instead of film techniques; (2) synthesis of untwinned single crystals of CaTiO₃ and CdTiO₃; and (3) more sensitive tests for the absence of a center of symmetry in the crystal. The purpose of this paper is to present new crystallographic data and refinement of the structure of CaTiO₃ and to clarify the space group for CdTiO₂.

Experimental. The crystals of CaTiO₃ were grown from equimolar mixtures of CaO and TiO₂ at 1470 K and 2.5 GPa for 40 min, using a girdle-anvil solid-media apparatus equipped with an internal graphite heater (Liebermann, Ringwood, Mayson & Major, 1975). The starting materials were loaded into a Pt capsule with the open ends crimped tight, welded shut, and cold-pressed with the aid of a pellet press. The crystals of CdTiO₃ were synthesized in a piston-cylinder apparatus (Boyd & England, 1960) from equimolar mixtures of CdO and TiO₂ at 1470 K and 1.5 GPa for 60 min. A quantity of H₂O (10–15%) was present in each charge to promote crystal growth.

Some of the crystals of CaTiO₃ and CdTiO₃ looked untwinned under the polarizing microscope but, using X-ray precession photography, almost all crystals were found to be twinned. Finally, an untwinned crystal for each compound was found; the crystals are transparent and approximately parallelepiped in shape with dimensions $70 \times 60 \times 50 \,\mu\text{m}$ for CaTiO₃ and $70 \times$ $60 \times 60 \ \mu m$ for CdTiO₃. The unit cell was determined for each crystal from a least-squares fit to positions of 20 reflections in the range $43 \le 2\theta \le 68^\circ$. Each reflection was centered at eight different equivalent positions of the Picker four-circle diffractometer (graphite-monochromatized Mo $K\alpha_1$ radiation; $\lambda =$ 0.70926 Å). The precession photographs and the intensity data from the four-circle diffractometer verified that the Laue symmetry of each crystal is mmm and the systematic absences are: no conditions on hkl; k = 2n on 0kl; h + l = 2n on h0l; no conditions on hk0. The possible space group for each crystal is either D_{2h}^{16} -Pbnm or C_{2v}^{9} -Pbn2₁.

Integrated intensity data up to $2\theta = 90^{\circ}$ were collected using the $\omega - 2\theta$ scan mode of the four-circle diffractometer with a scan width of $2 \cdot 0 + 0 \cdot 7 \tan \theta$ (° in 2θ). The scan speed and time for each reflection were varied so as to obtain $\sigma_I/I = 0.01$ or to measure up to 300 s. The range of *hkl* values measured is: $0 \le h \le 10$, $0 \le k \le 10$, and $0 \le l \le 15$. Of 973 independent reflections measured for CaTiO₃, there were 703 for which $I_{\rm obs} \ge 2\sigma_I$ and could be used for refinement. Likewise, 829 of the 956 independent reflections collected for CdTiO₃ were used. One standard reflection, 532, was measured for each crystal; the variation in I_{obs} was $\pm 1.9\%$ for CaTiO₃ and $\pm 2.6\%$ for CdTiO₃. Each set of intensities was corrected for Lorentz and polarization factors. An integration method for the absorption correction was applied to each crystal, using the program ACACA (Wuensch & Prewitt, 1965). The transmission factors varied from 0.706 to 0.765 for CaTiO₃ and from 0.401 to 0.525 for CdTiO₃.

All parameters (scale factor, secondary-extinction parameter, atom coordinates and anisotropic temperature factors) were refined simultaneously using the full-matrix least-squares program *RADY* (Sasaki *et al.*, 1983; originally *ORFLS* by Busing, Martin & Levy, 1963). The residuals of the function $\sum w_i(|F_o| - |F_c|)_i^2$ were minimized with $w_i = 1/\sigma_F^2$, where

$$\sigma_F = S \{ C_t / T_m^2 + \frac{1}{2} (B_g / B_t) + I_{\rm obs} \varepsilon \}^{1/2},$$

s is the scan width, C_t is the total counts under a peak, T_m is the time to record a peak, B_g is background count, B_t is background time, I_{obs} is integrated intensity and $\varepsilon = 0.9 \times 10^{-7}$. The structural refinements for CaTiO₃ were based on space group *Pbnm*. The final *R* and *wR* values are 0.023 and 0.029, respectively, and the goodness of fit is 1.10. For the CdTiO₃ crystal, the refinements were made by using models for both *Pbnm* and *Pbn2*₁. It should be noted that the difference in

^{*} Although Kay & Miles (1957) reported space group $Pc2_1n$, $Pbn2_1$ is used here on the basis of the standard definition for perovskites.

Table 1. Atomic coordinates and equivalent isotropic temperature factors of CaTiO₃ and CdTiO₃ perovskites

The results of $CdTiO_3$ are based on both *Pbnm* and *Pbn2*₁ models and are compared with the previous results of Kay & Miles (1957).

KM: Kay & Miles (1957): KVG: Koopmans et al. (1983).

1	\mathbf{K} \mathbf					
	CaTiO ₃ Pbnm		CdTiO ₃ Pbnm	CdTiO ₃ Pbn2 ₁ (model)		
	This study	KVG	This study	This study	KM	
Ca site	\$		-			
x .	-0.00676 (7)	-0.0083 (7)	-0.00847 (3)	-0.00843 (3)	-0.006	
У	0.03602 (6)	0.0360 (5)	0.03873 (3)	0.03871 (3)	-0.016	
Z	ł	1 4	14	1 *	$\frac{1}{4}$	
Beq	0.612 (5)	1.01 (7)	0.608 (4)	Ó∙613 (3)		
Ti sites	3					
x	0	0	0	-0.0011 (13)	0.095	
у	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$ 0	0.5005†	0.435	
z	0	Ō	Ō	-0.0009 (3)	0.0	
Beq	0-395 (4)	0.6 (1)	0.484 (6)	0.485 (6)		
O(1) si	ites					
x	0.0714 (3)	0.0726	0.0902 (3)	0.0898 (3)	0.03	
у	0.4838 (2)	0.4827	0.4722 (3)	0.4721 (3)	0.45	
z	14	4	4	0.244 (1)	0.25	
Beq	0.53 (2)	0,94 (6)	0.05 (2)	0.41 (3)		
O(2) s	ites					
x	0.7108 (2)	0.7099 (3)	0.7008 (2)	0.706 (1)	0.80	
у	0.2888 (2)	0.2877 (3)	0.2969 (2)	0.304 (1)	0.19	
z	0-0371 (1)	0.0369 (2)	0.0472 (2)	0.0482 (9)	0.007	
B _{eq}	0.50 (1)	0.94 (6)	0.55 (2)	0.53 (6)		
O(2) (2) sites						
x				0.696 (1)	0.80	
У				0-290 (1)	0.19	
z				0.4538 (9)	0.47	
В _{еq}				0,49 (6)		
* The z coordinate of Cd atoms is defined as $\frac{1}{2}$.						

* The z coordinate of Cd atoms is defined as $\frac{1}{4}$.

[†] The y coordinate of Ti atoms for this model was fixed because of the oscillation by ± 0.003 around $\frac{1}{2}$ (see Table 3).

atomic coordinates between centrosymmetric and non-centrosymmetric CdTiO₃ models is very small and the refinements converged with similar R factors: R = 0.019 and wR = 0.030 (goodness of fit = 1.25) for the Pbnm model; R = 0.018 and wR = 0.027 (goodness of fit = 1.14) for the *Pbn*2, model. Ratios of maximum least-squares shift to e.s.d. in final refinement cycles are 4.8×10^{-4} for CaTiO₃ and 3.5×10^{-3} and 1.6×10^{-3} for CdTiO₃ (*Pbnm* and *Pbn*2₁ models), respectively. Atomic scattering factors and anomalous-dispersion coefficients were taken from International Tables for X-ray Crystallography (1974) and Tokonami (1965). Secondary-extinction parameters, g (Becker & Coppens, 1974) are 1.6×10^{-3} and $3.9 \times$ 10^{-3} for CaTiO₃ and CdTiO₃, respectively. The results of structural refinements for CaTiO₃ and CdTiO₃ are given in Table 1 which includes atomic coordinates and temperature factors.* Difference Fourier syntheses calculated after the final refinements showed minimum and maximum values of -1.3, $1.0 \text{ e} \text{ Å}^{-3}$ for CaTiO₃ and -1.1, $1.7 \text{ e} \text{ Å}^{-3}$ for CdTiO₃.

Discussion.

Space-group determination

(1) Statistical probability of intensity distribution. The space groups of CaTiO₃ and CdTiO₃ are either Pbnm (centrosymmetric) or Pbn2₁ (non-centrosymmetric) on the basis of the information above. Some information about the probable presence or absence of a center of symmetry in a crystal should be contained in the 'probability distribution' of the observed intensity. For example, the ratio $r = \langle |F| \rangle^2 / \langle I \rangle$ may indicate the presence (=0.637) or absence (=0.785) of a center of symmetry (Wilson, 1949). The r values calculated for CaTiO₃ and CdTiO₃ are 0.531 and 0.590, respectively. It is also possible to determine the probability distribution of the intensities. with the zero-moment test reported by Howells, Phillips & Rogers (1950). There is a considerable difference in N(z) between the centric and acentric distributions, where N(z) is the fraction of reflections with $I < z \langle I \rangle$ as a function of $z = I/\langle I \rangle$. As seen in Fig. 1, N(z) for the centrosymmetric structure is greater than for the non-centrosymmetric structure for all values. The distortion plots for CaTiO₃ and CdTiO₃ in Fig. 1 are similar and resemble the N(z) curve for the centrosymmetric structure both in value of N(z) and in curvature.

Another effect can be detected in particular projections of the space groups, *Pbnm* and *Pbn2*₁. The presence of the mirror plane should be expected to increase the average intensity of the *hk*0 reflections, because each atom in the unit cell appears on top of its mirror-related image. Therefore, it is interesting to estimate the ratio $\sigma_{hk0} = \langle I \rangle_{hk0} / \langle I \rangle_{hkl}$. The experi-

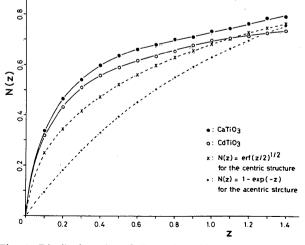


Fig. 1. Distribution plot of X-ray intensities for CaTiO₃ and CdTiO₃, compared with the ideal N(z) values versus $z = I/\langle I \rangle$.

^{*} Lists of structure factors and anisotropic temperature factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43975 (20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

mental ratios of σ_{hk0} , 2.4 (CaTiO₃) and 1.8 (CdTiO₃), are close to 2 which indicates the presence of the mirror elements ($\sigma_{hk0} = 1$ for absence). The σ values for h0l and 0kl reflections range between 2.4 and 2.5 for these specimens. It is clear that both experimental values are closer to that of space group *Pbnm*, although there is the possibility that the experimental distributions follow some kind of hypersymmetry.

(2) Physical properties. If crystals belong to space group $Pbn2_1$ and are piezoelectric, there should be a resonance between an oscillating electric field and the crystal. A piezoelectric oscillator with the frequency range of 1-14 MHz was used to detect this resonance (Giebe-Scheibe method) in CdTiO₃. The tests were negative, which suggests that the crystal is centrosymmetric or the resonance could not be detected. This result is consistent with the previous result reported by Sholokhovich et al. (1969).

The second-harmonic generation in crystalline powders gives useful information on the non-linear optical properties of crystals and makes possible the detection of small deviations from centrosymmetry (Kurtz & Perry, 1968). We have used in this study the apparatus of Bish, Horsey & Newnham (1979) with the additional improvements of higher-bandwidth electronics and a photomultiplier-tube housing cooled for noise reduction.

The CdTiO₃ sample had a signal lower than could be measured on the equipment. The signal appeared to be at least three orders of magnitude weaker than quartz or five orders weaker than BaTiO₃ at room temperature. This test cannot determine a zero signal and ultimately other factors will produce extremely weak signals. Although only a positive test for non-centrosymmetry has significance, this test suggests that there is no reason to infer a non-centrosymmetric structure.

(3) Structural approach. The previous X-ray study proposed a non-centrosymmetric Pbn2, structure for CdTiO₃ (Kay & Miles, 1957). Most of the arguments were based on the differences between $|F_{o}|$ and $|F_c|$ for the 0kl reflections (k = odd; l = odd); Kay & Miles concluded that the differences could be explained by the systematic shift in the atomic coordinates of Ti and O atoms from the Pbnm structure. However, the observed structure factors for Okl reflections obtained in our study (Pbnm model) do not have such a discrepancy (see Table 2). The intensity variation in Kay & Miles's (1957) data could be experimental errors resulting from the film techniques. Since Kay & Miles (1957) also indicated a large displacement of the Ti atoms along the y axis, residual factors of the least-squares calculation were computed by changing the y coordinate of Ti atoms (Table 3). The residual factors have a minimum near y = 0.5 on a parabola. Therefore, it is more suitable to assign the space group of CdTiO₃ as *Pbnm*, rather than the polar group Pbn2, suggested by Kay & Miles (1957).

Table 2. The structure-factor tables for 0kl, h0l and hk0 reflections of CdTiO₃ based on the least-squares calculation of a Pbnm model

The list includes only reflections described in Kay & Miles (1957); the other reflections are given in deposited tables.

			This	study		Kay & Mi	les (1957)
h Ok	k I	l	$ F_{\rm obs} $	$ F_{calc} $	σ_F	$ F_{\rm obs} $	F _{calc}
0	2	1	53.04	53.45	0.85	21.1	17.8
0 0	2 2	3 5	69·28 32·32	70.05 31.82	1·15 0·56	24.0 10.0	23.0 11.8
ŏ	2	7	44.13	43.41	0.30	13.0	14.8
0	2	9	25.64	25.25	0.51	7.6	9.2
0	4	1	82.68	85.72	1.40	30.0	25.7
0	4 4	3 5	57.76	58.31	0.98	19·9	16.6
0 0	4	3 7	77.97 42.75	77.88 42.35	1·35 0·77	24.9 12.5	24-4 12-5
Ő	4	9	48.25	47.69	0.90	12.9	14.4
0	4	11	35.60	35.54	0.73	10.0	13.2
0 0	6 6	1 3	61·74 71·95	62.95 73.21	1.08 1.27	19·9 23·0	19·6 22·6
0	6	5	45.16	45.89	0.83	13.6	17.1
0	6	7	57.34	58.32	1.07	16.6	19.1
0	6	9	38-47	38.04	0.77	10.5	15.8
0 0	8 8	1 3	44.81 36.36	46∙26 37∙27	0∙86 0∙72	13·5 11·1	19·0 18·3
Ŏ	8	5	44.66	45.09	0.88	12.1	18.6
<i>h</i> 0	.,						
1	0	3	36.50	37.81	0.59	11.7	10.7
1	0	5	24.11	23.97	0.43	7.5	8.4
1	0	7	14.86	14.74	0.33	3.9	3.5
3	0 0	1 3	3·16 16·65	3.90 16.99	0·29 0·32	<3.0 5.6	1·2 7·0
3 3 3 5 5	ŏ	5	7.01	7.48	0.29	<3.0	1.8
3	0	7	12.53	12.26	0.33	3.6	3.8
3	0 0	9 1	4.78 19.80	5.35 20.31	0·45 0·39	<3.0 6.2	2·0 4·9
5	ő	3	18.08	18.63	0.39	5.5	4.9
5 5	0	5	17.22	17.06	0.39	6.1	4.9
	0	7	14.63	14-54	0.39	4.5	4.2
5 7	0 0	9 1	12.00 27.69	11.88 27.93	0·41 0·55	3.0 8.3	3·8 6·7
7	ŏ	3	20.72	20.44	0.46	5.7	4.1
7	0	5	28.01	28.41	0.58	8.5	7.9
7 7	0	7	16.28	16.10	0.45	4.9	4.5
9	0 0	9 1	19·89 21·32	20·33 21·67	0·52 0·52	5·5 5·4	5·2 5·1
9	Ő	3	28-34	28.61	0.63	7.8	8-1
9	0	5	14.02	14.73	0.48	3.0	3.2
9	0	7	25-21	24.64	0.61	6.6	7.1
hk							
1 1	2 4	0 0	15.66 30.07	16·50	0.28	4.4	8∙6 8∙4
1	4	0	5.77	29·70 5·93	0·52 0·37	8·2 <3·0	8.4 2.5
2	ĭ	ŏ	24.00	25.06	0.40	7.6	7.8
2	3	0	13-41	12.75	0.28	3.5	3.5
3 3	2 4	0 0	22.99 8.93	23.16 8.53	0·41 0·28	6·4 <3·0	4.6 1.8
3	6	ŏ	22.69	22.55	0.47	4.8	4.8
3 4	1	0	24.61	25.04	0.44	6.8	7.3
4	3 2	0	2.94 12.23	0.68	0·42 0·31	<3.0	0.1
4 5 5 5	2	0 0	12.23	12·24 17·29	0.31	3·3 4·0	1.6 2.5
5	6	0	15.85	15.24	0.42	3.6	2.9
6	1	0	5.60	5.61	0.41	<3.0	3.6
6 7	3 2	0 0	23·40 6·93	23.40 6.35	0·48 0·43	6·3 <3·0	5·4 0·7
7	4	Ő	20.32	19.89	0.43	4.8	4.5
7	6	0	8.72	8.68	0.48	<3.0	2-4

Interatomic distances and angles for both perovskites are given in Tables 4–6. The mean distances are $\langle Ca-O \rangle^{xii} = 2.726 \text{ Å}$ ($\langle Ca-O \rangle^{viii} = 2.519 \text{ Å}$) and $\langle Ti-O \rangle^{vi} = 1.955 \text{ Å}$ for $CaTiO_3$ and $\langle Cd-O \rangle^{xii} =$

Table 3. Residual factors and R values versus the y displacement of Ti sites for CdTiO₃: $y = \frac{1}{2} + \Delta y$

All other variables based on the $Pbn2_1$ structure, scale and extinction factors are refined simultaneously with 829 reflections.

∆y	$\sum w(F_o - F_c)^2$	R	wR
-0.02	8283	0.0437	0.0766
-0.015	2725	0.0269	0.0439
-0.010	1334	0.0202	0.0307
0.005	1064	0.0184	0.0275
0	1013	0.0177	0.0268
0.005	1059	0.0179	0.0274
0.010	1324	0.0200	0.0306
0.015	2637	0.0265	0.0432
0.020	7772	0-0423	0.0742
-0.065	139400	0.2134	0.3143*
0.005	1013	0.0177	0.0268†
0	1247	0.0188	·0297‡

* The y coordinate of Ti taken from Kay & Miles (1957).

† The Pbn2, model.

‡ The *Pbnm* model shown in Table 2.

Table 4. Interatomic distances (Å) and angles (°) in Tioctahedra

Standard deviations are in parentheses. The atoms are numbered with lower-case Roman numerals following Sasaki *et al.* (1983).

			0(1) 0
	CaTiO ₃	CdTiO,	-0
$Ti^{i}-O(1^{i}) \times 2$	1.9503 (3)	1.9694 (4)	-0
$-O(2^{v}) \times 2$	1.9551 (8)	1.965 (1)	O(1 ^{iv})-C
$-O(2^{viii}) \times 2$	1.9587 (8)	1.963 (1)	-C
Mean (Ti-O)	1.9547	1.966	0(2'')-0
Bond-length distortion ($\times 10^3$)	0.003	0.002	$O(2^{vil}) - O(2^{vil})$
	0 000	0 002	O(2 ⁱ ′)–O
$O(1^{i})-O(2^{v}) \times 2$	2.778 (1)	2.815 (2)	O(2 ⁱⁱⁱ ')—(
$-O(2^{iv}) \times 2$	2.776 (1)	2.805 (2)	O(2 ^{i'})—O
$-O(2^i) \times 2$	2.745 (1)	2.749 (2)	-0
$-O(2^{vill}) \times 2$	2.752 (1)	2.757 (2)	-0
$O(2^{v}) - O(2^{v lii}) \times 2$	2.754 (1)	2.761 (2)	O(2 ^{iv′})—0
$-O(2^{iv}) \times 2$	2.781 (1)	2.795 (1)	Mean ⟨O
Mean $\langle O - O \rangle$	2.764	2.780	
· · ·			O(1)-M
$O(1^{i})-Ti^{i}-O(2^{i})$	89.51 (5)	89.00 (6)	$O(1^{iv})-M$
$O(1^{i})$ -Ti ⁱ -O(2 ^v)	90.68 (5)	91-36 (6)	O(1 [™])—M
$O(2^{v})$ -Ti ⁱ - $O(2^{vili})$	89.43 (3)	89-29 (4)	O(1 ^v)—M
$O(2^{i})$ -Ti ⁱ -O(2 ^{vili})	90.57 (3)	90-71 (4)	O(2 ^v)−M
a			O(2 ⁱⁱⁱ ')—A
Symmetry code			O(2 ^{i'})—M
$M(Ca, Cd)$ (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$	O(1) (i) x, y, z		O(2 ^{iv})—A
(ii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$	(ii) − <i>x</i> , 1 −	<i>y</i> , − <i>z</i>	O(2 ^{vii})—A
(iii) <i>x</i> , <i>y</i> , <i>z</i>	(iii) $1 + x, y$	ν, z	$O(2^{\prime\prime})-M$
(v) $1 + x, y, z$	(iv) $\frac{1}{2} - x$, $\frac{1}{2}$	$+ y, \frac{1}{2} - z$	O(2 ^v)-M
Ti (i) x, y, z			O(2*iii)-/
(ii) x, y, $\frac{1}{2} - z$	O(2)(i) - 1 + x,	y, z	O(2 ^{i'})-M
(iii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $-z$	(i') x, y, z		O(2 ^{iv'})-A
$(iv) \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$	(ii') x, y, ½ -	- z	O(1) - M
(v) $1 - x, 1 - y, -z$	$(iii')^{\frac{3}{2}} - x,$	$\frac{1}{2} + y, \frac{1}{2} - z$	$O(1^{v})-M$
(vi) $1 - x$, $1 - y$, $\frac{1}{2} + z$	(iv) $\frac{1}{2} - x$, $\frac{1}{2}$	+ y, z	$O(1^{v})-M$
$(vii) \frac{1}{2} - x, \frac{1}{2} + y, z$	$(iv')\frac{3}{2} - x$,	$\frac{1}{3} + y, z$	0(1 ^{iif})-M
$(viii)^{\frac{1}{2}} - x, \frac{1}{2} + y, \frac{1}{2} - z$	(v) $1 - x$, 1		$O(1^{iii}) - M$
	(vi) $1 - x$, 1		O(1 ¹ v)-M
		$x, \frac{1}{2} - y, \frac{1}{2} + z$	O(1 ^{iv})M
		$x, \frac{1}{2} - y, -z$	$O(1^i) - M$
	(, 2	· · -	、 ,

2.718 Å ($\langle \text{Cd}-\text{O} \rangle^{\text{viii}} = 2.466 \text{ Å}$) and $\langle \text{Ti}-\text{O} \rangle^{\text{vi}} = 1.966 \text{ Å}$ for CdTiO₃. Both compounds satisfy the criterion for orthorhombic GdFeO₃-type perovskites. The degree of distortion and tilting of polyhedra is indicated schematically as a function of the *observed* tolerance factor

$$t_{\rm obs} = \langle A - O \rangle / 2^{1/2} \langle B - O \rangle,$$

where $\langle A-O \rangle$ and $\langle B-O \rangle$ are the mean interatomic distances with twelve and six coordination for A (Ca, Cd) and B (Ti) sites, respectively (Sasaki *et al.*, 1983). For the ideal cubic perovskites, $t_{obs} = 1.0$, so CdTiO₃ ($t_{obs} = 0.978$) is more distorted than CaTiO₃ ($t_{obs} = 0.986$). The t_{obs} values estimated in this study can be used to plot experimental curves of such crystal-

Table 5. Interatomic distances (Å) and angles (°) with e.s.d.'s in parentheses for cuboctahedron

7‡			CaTiO ₃	CdTiO ₃
	$M^{1}-O(1^{1})$	× 1		
			2.359(1)	2.248(2)
	O(1 ^{iv})	× 1	2.473 (1)	2.408 (2)
	-O(1 ¹¹¹)	× 1	3.051 (1)	3.107 (2)
	-O(1 ^v)	× 1	3.034 (1)	3.116 (2)
	O(2 ^{i'})	× 2	2.379 (1)	2.269 (1)
	-O(2 ^{iv})	× 2	2.617 (1)	2.593 (1)
. T:	O(2 ^v)	× 2	2.663 (1)	2.675 (1)
1 Ti	$-O(2^{viii})$	× 2	3.236 (1)	3-332 (1)
	Mean (M–O)		2.726	2.718
	Bond-length distortic	on (×103)	13-37	20-53
ered	O(1 ¹)-O(1 ^v)	× 2	3.331 (2)	3.197 (2)
	$O(1^{v}) - O(1^{11})$	× 2	4.401(2)	4.514 (2)
2	$-O(2^{vii})$	x 4	2.778 (1)	2.815(2)
о,	$-O(2^{ii'})$	x 4	2.776 (1)	2.805 (2)
4 (4)	$O(1^{iv}) - O(2^{iii'})$	× 4	2.745 (1)	2.803 (2)
(1)	$-O(2^{vi})$	× 4	2.743(1) 2.752(1)	2.749 (2)
(1)	$O(2^{i}) - O(2^{ii})$	× 4 × 2		· · ·
			3-253 (1)	3.089 (2)
	$O(2^{vil}) - O(2^{viil})$	× 2	4.387 (1)	4.528 (2)
	$O(2^{i'}) - O(2^{iv'})$	× 4	2.754 (1)	2.761 (2)
(2)	$O(2^{iii'}) - O(2^{vi})$	× 4	2.781 (1)	2.795 (1)
(2)	O(2 ¹)-O(2 ¹¹)	× 4	4.262 (1)	4.143 (2)
(2)	-O(2 ^{vii})	× 4	4.691 (1)	4.669 (2)
(2)	-O(2 ^v)	× 2	3.279 (1)	3.148 (2)
(2)	$O(2^{iv'}) - O(2^{vili})$	× 2	4.459 (1)	4.578 (2)
(1)	Mean $\langle O-O \rangle$		3.372	3.366
	$O(1^{i}) - M^{i} - O(1^{iv})$	× 1	87.12 (5)	86.68 (6)
6)	$O(1^{iv}) - M^1 - O(1^{iii})$	× 1	105.13 (4)	109.22 (5)
5)	$O(1^{iii}) - M^{i} - O(1^{v})$	×1	92.63 (4)	93.01 (4)
4)	$O(1^{v}) - M - O(1^{i})$	× 1	75.12 (4)	71.10 (5)
4)	$O(2^{v}) - M^{1} - O(2^{v})$	× 2	110.93 (3)	115.68 (3)
•)	$O(2^{iii'}) - M^{1} - O(2^{iv'})$	× 2	76.86 (3)	73.12 (4)
	$O(2^{i'}) - M - O(2^{v})$	× 2	80.92 (3)	78.63 (4)
	$O(2^{iv'}) - M^{i} - O(2^{viii})$	\hat{x} \hat{z}	98.72 (3)	100-45 (3)
	$O(2^{vii}) - M^1 - O(2^{viii})$	x 2	85.36 (3)	85-62 (3)
	$O(2^{1'}) - M^1 - O(2^{11'})$	\hat{x}^2	86.25 (3)	85.83 (4)
	$O(2^{v}) - M - O(2^{v ii})$	$\hat{\times}$ 2	54.61 (2)	53.37 (3)
	$O(2^{iii}) - M^{i} - O(2^{i'})$	× 2	56.95 (3)	56.08 (3)
	$O(2^{i'})-M^{i}-O(2^{iv})$	\hat{x}^2	66.70 (3)	68.83 (4)
	$O(2^{iv'}) - M^{i} - O(2^{v})$	$\times 2 \times 2$	63.57 (3)	64.07 (3)
	$O(2^{\circ}) - M - O(2^{\circ})$ $O(1^{\circ}) - M^{\circ} - O(2^{\circ})$	\hat{x}^2	56.34 (2)	55.17 (3)
	$O(1^{v}) - M^{t} - O(2^{vit})$	× 2 × 2		
	$O(1^{v}) - M^{v} - O(2^{u})$ $O(1^{v}) - M^{v} - O(2^{u})$	× 2 × 2	52·47 (2)	51.64(2)
			60·26 (3)	60·38 (3)
	$O(1^{iii}) - M' - O(2^{ii'})$	× 2	59·20 (3)	59.08 (3)
	$O(1^{iii}) - M^{i} - O(2^{iii'})$	× 2	58·04 (3)	58.12 (3)
	$O(1^{iv}) - \dot{M}^{i} - O(2^{iii'})$	× 2	65·21 (3)	66.58 (4)
	$O(1^{iv}) - M^{i} - O(2^{vi})$	× 2	64.68 (2)	65-45 (3)
	$O(1^i)-M^i-O(2^{\nu i})$	× 2	66.85 (2)	69-13 (3)

Table 6. The metal-metal distances (Å) and Ti-O-Ti						
and	O(2) - O(2) - O(2)	angles	(°),	with	e.s.d.'s	in
parentheses						

Ti ⁱ —Ti ⁱⁱⁱ —Ti ⁱⁱ	CaTiO ₃ 3.8262 (2) 3.8201 (3)	CdTiO ₃ 3·7927 (2) 3·8088 (2)
M ¹ −M ¹ⁱⁱ −M [∨] −M ¹ⁱ	3·8776 (5) 3·7754 (5) 3·8408 (3)	3.856 (3) 3.730 (3) 3.833 (2)
<i>M</i> ¹ −Ti ¹ −Ti ¹¹¹ −Ti [×] −Ti ^{×11}	3.3344 (3) 3.4870 (3) 3.2753 (3) 3.1664 (3)	3·3088 (2) 3·4870 (2) 3·2359 (2) 3·1437 (2)
$\begin{array}{c} Ti^{i} - O(1^{i}) - Ti^{ii} \\ - O(2^{viii}) - Ti^{iii} \end{array}$	156-67 (8) 155-71 (5)	150-48 (9) 149-78 (6)
$ \begin{split} & M^{i} - O(1^{i}) - Ti^{i} \\ & M^{iii} - O(1^{i}) - Ti^{i} \\ & M^{i} - O(2^{i}) - Ti^{i} \\ & - O(2^{iv}) - Ti^{ivi} \\ & - O(2^{iv}) - Ti^{ivii} \\ & - O(2^{v}) - Ti^{i} \\ & - O(2^{v}) - Ti^{i} \\ & - O(2^{viii}) - Ti^{i} \\ & - O(2^{viii}) - Ti^{iii} \\ & - O(2^{i}) - Ti^{iii} \\ & - O(2^{i}) - Ti^{iii} \end{split} $	100.96 (4) 90.63 (4) 97.69 (4) 90.25 (3) 86.40 (3) 85.04 (3) 91.13 (4) 75.43 (3) 80.29 (3) 106.60 (4)	103.15 (5) 91.25 (5) 99.44 (5) 89.40 (4) 86.04 (4) 83.85 (4) 89.63 (4) 72.16 (3) 77.63 (3) 110.77 (5)
$\begin{array}{l} O(2^{i}) - O(2^{v(i)}) - O(2^{i}) \\ O(2^{v(i)}) - O(2^{i}) - O(2^{iv'}) \\ O(2^{i'}) - O(2^{i(')}) - O(2^{v(i)}) \end{array}$	150·54 (5) 107·35 (4) 101·77 (4)	143·26 (6) 110·98 (5) 104·92 (5)

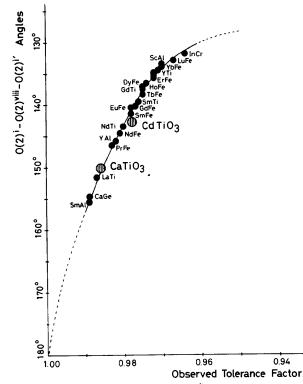


Fig. 2. Tilting of polyhedra near the *ab* plane in terms of $O(2^{i})-O(2^{iii})-O(2^{i})$ angles *versus* t_{obs} (after Sasaki *et al.*, 1983).

lographic quantities as interatomic angles and bondlength distortion. All of the GdFeO₃-type perovskites define a smooth systematic trend. As t_{obs} decreases, the $O(2^i)-O(2^{vii})-O(2^i)$ [*ab* tilting] angle decreases and $O(2^{i'})-O(2^{ii'})-O(2^{vii})$ [*bc* tilting] and A-O(1)-Bangles increase. Both CaTiO₃ and CdTiO₃ fit this trend very well using our new data. The older data of Kay & Bailey (1957) for CaTiO₃ [$t_{obs} = 0.996$, $O(2^i)-O(2^{viii})-O(2^i) = 161^\circ$] deviated markedly from the other GdFeO₃-type perovskites. Fig. 2 is an example showing the systematic relationships of the tilting of polyhedra in the *ab* plane. Similar relationships are exhibited in the other representations developed by Sasaki *et al.* (1983; Figs. 3–6).

Results

Analyses of crystal structure and physical properties for CdTiO₃ lead us to conclude that there is no reason for CdTiO₃ to have a non-centrosymmetric structure with the space group $Pbn2_1$, but rather the space group is *Pbnm* as for most other orthorhombic perovskites. CaTiO₃ is also consistent with the *Pbnm* structure. The crystallographic parameters obtained here for these compounds are consistent with the systematic trends found previously among GdFeO₃-type perovskites.

The authors thank Professors R. C. Liebermann and R. E. Newnham for various suggestions and discussions. Computations were carried out on the Univac 1110 at the Computer Center of SUNY, Stony Brook. This project has been supported by NSF grants EAR 83-19504 and EAR 82-13513.

References

- BECKER, P. J. & COPPENS, P. (1974). Acta Cryst. A30, 129-147.
- BISH, D. L., HORSEY, R. S. & NEWNHAM, R. E. (1979). Am. Mineral. 64, 1052–1055.
- BOYD, F. R. & ENGLAND, J. L. (1960). J. Geophys. Res. 65, 741-748.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1963). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210-214.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht, The Netherlands.)
- KAY, H. F. & BAILEY, P. C. (1957). Acta Cryst. 10, 219-226.
- KAY, H. F. & MILES, J. L. (1957). Acta Cryst. 10, 213-218.
- KOOPMANS, H. J. A., VAN DE VELDE, G. M. H. & GELLINGS, P. J. (1983). Acta Cryst. C39, 1323-1325.
- KURTZ, S. K. & PERRY, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
- LIEBERMANN, R. C., RINGWOOD, A. E., MAYSON, D. J. & MAJOR, A. (1975). Proc. 4th Int. Conf. on High Pressure, Kyoto, 1974, edited by J. OSUGI, pp. 495–502. Kyoto: Physico-chemical Society of Japan.
- MEGAW, H. D. (1946). Proc. Phys. Soc. 58, 133-152.

24-59.

97-110.

TOKONAMI, M. (1965). Acta Cryst. **19**, 486. WILSON, A. J. C. (1949). Acta Cryst. **2**, 318–321.

WUENSCH, B. J. & PREWITT, C. T. (1965). Z. Kristallogr. 122,

YAGI, T., MAO, H. & BELL, P. M. (1978). Phys. Chem. Miner. 3,

NÁRAY-SZABÓ, ST VON (1943). Naturwissenschaften, 30, 202.

SASAKI, S., PREWITT, C. T. & LIEBERMANN, R. C. (1983). Am. Mineral. 68, 1189–1198.

SHOLOKHOVICH, M. L., KRAMAROV, O. P., PROSKURYAKOV, B. F. & ÉKNADIOSYANTS, E. I. (1969). Sov. Phys. Crystallogr. 13, 967–970.

Acta Cryst. (1987). C43, 1674–1675

Thallium(I) Tetrachloroaurate(III)

BY PETER G. JONES, RALF SCHELBACH AND EINHARD SCHWARZMANN

Institut für anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

(Received 19 February 1987; accepted 2 April 1987)

Abstract. TlAuCl₄, $M_r = 543 \cdot 15$, monoclinic, C2/c, $a = 12 \cdot 298$ (3), $b = 5 \cdot 825$ (2), $c = 9 \cdot 681$ (3) Å, $\beta = 102 \cdot 09$ (2)°, $U = 678 \cdot 1$ (7) Å³, Z = 4, $D_x = 5 \cdot 32 \text{ Mg m}^{-3}$, $\mu(\text{Mo } K\alpha) = 45 \cdot 6 \text{ mm}^{-1}$, F(000) = 912, T = 293 K, $\lambda(\text{Mo } K\alpha) = 0.71069 \text{ Å}$, R = 0.067 for 721 unique observed reflections. The Tl atom lies on the twofold axis 0, y, 0.25 and is coordinated by ten chlorines. The Au atom lies on the symmetry centre 0.25, 0.75, 0.5 and displays the usual square-planar coordination. TlAuCl₄ and RbAuCl₄ are isostructural.

Introduction. As part of our studies of aurate salts, we have investigated the reaction of thallium(I) hydroxide with tetrachloroauric acid. One product settles out as a dark brown precipitate; this was refluxed with distilled water and the resulting solution (pH 4) left to stand. Small yellow crystals formed.

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters $(Å^2 \times 10^3)$

	x	у	Z	U_{eq}^*
TI	0	2260 (2)	2500	52 (1)
Au	2500	7500	5000	29 (1)
Cl(1)	620 (3)	7336 (7)	4300 (4)	45 (1)
Cl(2)	2694 (4)	4517 (8)	3550 (5)	50 (2)

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

Au-Cl(1)	2.271 (5)	Au-Cl(2)	2.277 (5)
Cl(1)-Au-Cl(2)	90.9 (2)	Cl(1)-Au-Cl(2 ^t)	89.1 (2)
T1····Cl(1) T1····Cl(1 ⁱⁱ) T1····Cl(2 ^{iv})	3·436 (5) 3·359 (5) 3·583 (5)	Tl····Cl(2) Tl····Cl(1 ⁱⁱⁱ)	3.511 (5) 3.350 (5)

Symmetry operators: (i) 0.5-x, 1.5-y, 1-z; (ii) x, -1+y, z; (iii) -x, 1-y, 1-z; (iv) -0.5+x, -0.5+y, z.

0108-2701/87/091674-02\$01.50

Experimental. A needle $0.2 \times 0.04 \times 0.02$ mm was mounted in a glass capillary and used to record 2726 profile-fitted intensities (Clegg, 1981) on a Stoe– Siemens four-circle diffractometer with monochromated Mo Ka radiation $(2\theta_{max} 60^\circ, quadrants \pm h+k+l)$ and $\pm h-k-l$ and some $\pm h+k-l$ equivalents). Three check reflections showed no significant intensity change. An empirical absorption correction based on azimuthal scans was performed, giving transmission factors 0.18-1.00. Merging equivalents gave 990 unique reflections ($R_{int} 0.041$); 721 reflections with $F > 4\sigma(F)$ were used for all calculations (program *SHELX*76; Sheldrick, 1976). Index ranges after merging were $|h| \le 16$, $|k| \le 8$, $|l| \le 12$. Cell constants were refined from 2θ values of 47 reflections in the range $19-25^\circ$.

The structure was solved by analysis of the Patterson function. Refinement on F (full-matrix) proceeded to R0.067, $wR \ 0.062$ [all atoms anisotropic, weighting scheme $w^{-1} = \sigma^2(F) + 0.0004F^2$, 31 parameters, S= 1.74, max. $\Delta/\sigma 0.001$, max. and min. features in final $\Delta\rho$ map +2.5 (near Au), -3.5 e Å⁻³]. The rather high R value is probably associated with residual absorption errors from a strongly absorbing (but relatively weakly diffracting) needle-shaped crystal. Atomic scattering factors used were those of *SHELX*. Final atomic coordinates are listed in Table 1, and bond lengths and

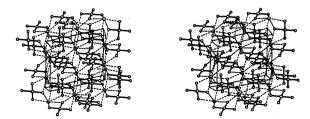


Fig. 1. Stereographic packing plot: view direction slightly rotated from the y axis.

© 1987 International Union of Crystallography